Image Processing Syllabus



Subject Code:07A80504 L:4 T/P/D:1 Credits:4 Int. Marks:20 Ext. Marks:80 Total Marks:100


UNIT I: I


Introduction : Examples of fields that use digital image processing, fundamental steps in digital image processing, components of image processing system.. Digital Image Fundamentals: A simple image formation model, image sampling and quantization, basic relationships between pixels (p.nos. 15-17, 21- 44, 50-69).


UNIT II: II


Image enhancement in the spatial domain : Basic gray-level transformation, histogram processing, enhancement using arithmetic and logic operators, basic spatial filtering, smoothing and sharpening spatial filters, combining the spatial enhancement methods ( p.nos 76-141).


UNIT III: III


Image restoration : A model of the image degradation/restoration process, noise models, restoration in the presence of noise–only spatial filtering, Weiner filtering, constrained least squares filtering, geometric transforms; Introduction to the Fourier transform and the frequency domain, estimating the degradation function (p.nos 147-167, 220-243, 256-276).


UNIT IV: IV


Color Image Processing : Color fundamentals, color models, pseudo color image processing, basics of full–color image processing, color transforms, smoothing and sharpening, color segmentation (p.nos: 282- 339).


UNIT V: V


Image Compression : Fundamentals, image compression models, error-free compression, lossypredictive coding, image compression standards (p.nos: 409-467,492-510).


UNIT VI: VI


Morphological Image Processing : Preliminaries, dilation, erosion, open and closing, hit or miss transformation, basic morphologic algorithms (p.nos:519-550).


UNIT VII: VII


Image Segmentation : Detection of discontinuous, edge linking and boundary detection, thresholding, region–based segmentation (p.nos: 567-617).


UNIT VIII: VIII


Object Recognition : Patterns and patterns classes, recognition based on decision–theoretic methods, matching, optimum statistical classifiers, neural networks, structural methods – matching shape numbers, string matching (p.nos: 693-735).







TEXT BOOKS:
1. Digital Image Processing, Rafeal C.Gonzalez, Richard E.Woods, Second Edition, Pearson Education/PHI.



REFERENCE BOOKS:
1. Image Processing, Analysis, and Machine Vision, Milan Sonka, Vaclav Hlavac and Roger Boyle, Second Edition, Thomson Learning.
2. Introduction to Digital Image Processing with Matlab, Alasdair McAndrew, Thomson Course Technology
3. Computer Vision and Image Processing, Adrian Low, Second Edition, B.S.Publications
4. Digital Image Processing using Matlab, Rafeal C.Gonzalez, Richard E.Woods, Steven L. Eddins, Pearson Education.